Bonding and Structures

GCSE Chemistry

March 10, 2025

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Ionic Bonding

Definition:

- Occurs when a metal atom reacts with a non-metal atom.
- Electrons are transferred to achieve a full outer shell.
- Metal atoms lose electrons to become positively charged ions.
- Non-metal atoms gain electrons to become negatively charged ions.

Key Details:

- Ions formed by Groups 1, 2, 6, and 7 have the electronic structure of noble gases.
- The charge on the ions relates to the group number of the element.

Ionic Compounds

Definition:

- Giant ionic structures (giant ionic lattice).
- Held together by strong electrostatic attractions between oppositely charged ions.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

These forces act in all directions.

Properties of Ionic Compounds

Key Properties:

- High melting and boiling points: Large amounts of energy are required to break strong electrostatic attractions.
- **Do not conduct electricity as solids:** lons cannot move.
- Conduct electricity when molten or dissolved: lons are free to move.

Ionic Bonding Diagram

Ionic Bond

ChemistryLeanner.com

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Giant Ionic Lattice

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Covalent Bonding

Definition:

- Atoms share pairs of electrons.
- Strong bonds form between atoms.

Examples:

 Covalently bonded substances include small molecules, large molecules (polymers), and giant covalent structures (e.g., diamond, graphite).

Representing Covalent Bonds

Example: Ammonia (NH₃)

 Diagram shows shared electron pairs between nitrogen and hydrogen atoms.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Properties of Small Covalent Molecules

Key Features:

- Usually gases or liquids with low melting and boiling points.
- Weak intermolecular forces are easily broken, not the covalent bonds.
- Do not conduct electricity: No overall electric charge.
- Intermolecular forces increase with molecule size, leading to higher melting and boiling points.

Giant Covalent Structures

Key Features:

- ► All atoms are linked by strong covalent bonds.
- Very high melting and boiling points due to the strength of the bonds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Diamond

Structure:

 Each carbon atom forms four covalent bonds with other carbon atoms.

Properties:

Does not conduct electricity (no delocalised electrons).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Extremely hard and has a very high melting point.

Graphite

Structure:

- Each carbon atom forms three covalent bonds, creating layers of hexagonal rings.
- One electron is delocalised, allowing graphite to conduct electricity.

Properties:

- Good conductor of electricity.
- Layers slide over each other due to weak intermolecular forces, making graphite a good lubricant.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Very high melting point.

Example

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Graphene and Fullerenes

Graphene:

- Single layer of graphite.
- Used in electronics and composites.

Fullerenes:

- Molecules of carbon atoms with hollow shapes.
- Structure based on hexagonal, pentagonal, or heptagonal rings.
- Examples: Buckminsterfullerene (C₆₀), carbon nanotubes.

Carbon Nanotubes:

- Cylindrical fullerenes with high length-to-diameter ratios.
- Used in nanotechnology, electronics, and materials.

Metallic Bonding Overview

Key Features of Metallic Structures:

- Giant structures of atoms arranged in a regular pattern.
- Electrons in the outer shell are **delocalised**, allowing them to move freely.
- Delocalised electrons create strong metallic bonds through sharing.

Properties of Metallic Structures

Key Properties:

- High Melting and Boiling Points: Due to strong metallic bonds.
- Good Conductors: Delocalised electrons transfer heat and electricity.
- Malleable and Ductile: Atoms can slide over each other.

Why Conductivity Works:

- Electrons carry electrical charge through the structure.
- Heat energy is transferred efficiently by moving electrons.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Pure Metals

Key Features:

- Atoms are arranged in layers.
- Layers can slide over each other, making metals bend and shape easily.

Limitation of Pure Metals:

- Too soft for many uses.
- Requires strengthening through mixing with other elements.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Metallic Bond

Alloys

Definition:

A mixture of two or more elements, at least one of which must be a metal.

Properties of Alloys:

 Harder than pure metals: Layers are distorted, preventing sliding.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Customisable for specific properties, such as strength, corrosion resistance, or flexibility.

Why Are Alloys Harder?

Key Reasons:

- Different sized atoms distort the regular layers in the structure.
- Distorted layers cannot slide over each other easily.

Examples:

Steel: An alloy of iron and carbon, used for construction.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 Brass: An alloy of copper and zinc, used for musical instruments.

Alloy Diagram

